Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Learning Analytics - Einzelansicht

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung Langtext
Veranstaltungsnummer Kurztext
Semester WiSe 2025/26 SWS 2
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen 30
Credits Belegung Keine Belegpflicht
Zeitfenster
Hyperlink
Sprache Englisch
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Status Bemerkung fällt aus am Max. Teilnehmer/-innen E-Learning
Einzeltermine anzeigen
iCalendar Export für Outlook
Mi. 12:00 bis 14:00 wöch. LC - LC 137       Präsenzveranstaltung
Gruppe [unbenannt]:
 
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Chounta, Irene-Angelica, Professorin, Dr.
Zielgruppen/Studiengänge
Zielgruppe/Studiengang Semester Pflichtkennzeichen
Master of Science Angewandte Kognitions- und Medienwissenschaft, Master of Science Angewandte Kognitions- und Medienwissenschaft 2 - 3 WP
Master of Science Computer Engineering, ISE, Master of Science Computer Engineering, ISE 1 - 3 WP
Master of Science Angewandte Informatik (Ingenieur- oder Medieninfor, Master of Science Angewandte Informatik (Ingenieur- oder Medieninfor 1 - 3 WP
Master of Science Software and Network Engineering, Master of Science Software and Network Engineering 1 - 3 WP
Master of Science Menschzentrierte Informatik und Psychologie, Master of Science Menschzentrierte Informatik und Psychologie 1 - 3 WP
Zuordnung zu Einrichtungen
Informatik
Inhalt
Kommentar

 

IMPORTANT: 

 

We have a limit of 30 students for this class (first come, first served). The registration will take place ONLINE from September 2nd 2025 to September 30th, 2025, or until the limit has been reached.

To register for the course, please complete the survey here: https://limesurvey.uni-due.de/index.php/246784?lang=en

Course Description

Learning analytics is an emerging interdisciplinary field at the intersection of education, data science, psychology, and learning sciences. This course provides a comprehensive introduction to the theory, methods, and applications of Learning Analytics. Students will learn how data about learners and their contexts can be collected, analyzed, and interpreted to enhance learning, improve teaching, and inform institutional decision-making. Through a combination of lectures, readings, hands-on projects, and critical discussions, students will develop both conceptual knowledge and practical skills in applying analytics to real-world educational challenges.

The course begins by exploring the conceptual foundations of learning analytics, including its historical development, theoretical underpinnings, and relationship to adjacent fields such as educational data mining, artificial intelligence in education, and learning sciences. Students will critically engage with the motivations for learning analytics, ranging from improving student learning outcomes and supporting instructor decision-making to informing institutional policy and advancing educational research.

The second part of the course introduces students to core methods and tools, including data collection from learning management systems and digital platforms, visualization techniques for representing learning processes, and statistical as well as machine learning approaches for modeling learner behavior and predicting outcomes. Through hands-on assignments, students will gain practical experience working with authentic or simulated educational datasets, applying analytical methods, and interpreting results in ways that support pedagogical and institutional goals.

The course also emphasizes the ethical, legal, and social dimensions of learning analytics, including issues of privacy, data governance, algorithmic bias, and the responsibilities of institutions in deploying analytics responsibly. Students will be encouraged to think critically about the benefits and risks of learning analytics, developing an informed perspective on its potential for shaping the future of education.

Over the semester, the students will go over the following topics:

  • What is Learning Analytics
  • Theoretical and Conceptual Foundations
  • Data in Learning Environments
  • Descriptive Analytics and Visualizations
  • Predictive Analytics in Education
  • Social and Network Analytics
  • Text and Discourse Analytics
  • Learning Design and Analytics
  • Institutional and Policy Perspectives
  • Ethics, Privacy, and Responsible Use
  • Emerging Trends in Learning Analytics

By the end of the course, students will:

- Understand the theoretical and practical foundations of learning analytics.
- Be able to apply data-driven methods to analyze and interpret learning processes.
- Critically evaluate the role of analytics in improving learner success, instructional design, and institutional strategy.
- Demonstrate awareness of the ethical and societal challenges associated with educational data use.
- Communicate findings from learning analytics to technical and non-technical audiences.

Readings

 

Übung (Exercise) Learning Analytics

[EN]

  • Participation in the Übung (Exercise) Learning Analytics is required for participating in the course exams. Students who have not successfully completed the Übung (Exercise) WILL NOT be able to participate in the final exams.
  • The assignment of students to exercise groups will be carried out during the first two lecture weeks.

[DE]

  • Die Teilnahme an der Übung „Learning Analytics“ ist Voraussetzung für die Teilnahme an den Kursprüfungen. Studierende, die die Übung nicht erfolgreich abgeschlossen haben, können NICHT an den Abschlussprüfungen teilnehmen.
  • Die Einteilung der Studierenden in Übungsgruppen erfolgt in den ersten beiden Vorlesungswochen.

Strukturbaum
Die Veranstaltung wurde 17 mal im Vorlesungsverzeichnis WiSe 2025/26 gefunden:
Mobilitätsfenster  - - - 1
Mobilitätsfenster  - - - 2
Wahlpflichtbereich  - - - 6
Wahlkatalog Grundlagen  - - - 7