Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SoSe 2025
  2. Hilfe
  3. Sitemap
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]

Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2024/25 , Aktuelles Semester: SoSe 2025
  • Funktionen:
Network Analysis    Sprache: Englisch    Belegpflicht
(Keine Nummer) Vorlesung/Übung     WiSe 2024/25     4 SWS     jedes 2. Semester     ECTS-Punkte: 5     https://moodle.uni-due.de/course/view.php?id=5025
   Lehreinheit: Elektrotechnik und Informationstechnik    
 
      15 B.Sc.ISE, ISE/CE-Profile Communications (Bachelor of Science)   ( 1. Semester )
  15 B.Sc., ISE/CE-Profile Software Engineering (Bachelor of Science)   ( 1. Semester )
  15 B.Sc.ISE, Steel Technology and Metal Forming, STMF (Bachelor of Science)   ( 1. Semester )
  15 B.Sc.ISE, Structural Engineering   ( 1. Semester )
  15 B.Sc., ISE/Electrical and Electronic Engineering (Bachelor of Science)   ( 1. Semester )
  15 B.Sc.ISE, Metallury and Metal Forming MMF (Bachelor of Science)   ( 1. Semester )
  15 B.Sc.ISE, Mechanical Engineering (Bachelor of Science)   ( 1. Semester )
   Zugeordnete Lehrperson:   Schmechel verantwort
 
 
Zur Zeit keine Belegung möglich
   Termin: Freitag   12:30  -  16:30    wöch.       Raum :   BA 026   BA  
 
 
   Bemerkung:

Changes for PO24: - none

Dieser Kurs behandelt die Analyse linearer elektrischer Netzwerke.

Ausgehend von der Modellvorstellung konzentrierter Bauelemente werden lineare passive Bauelemente (Widerstand, Kondensator, Spule) und aktive Bauelemente (Strom- und Spannungsquellen) definiert.

Grundlegende Gesetzmäßigkeiten in elektrischen Netzwerken (Kirchhoffsche Gesetze) werden vermittelt und Methoden zur Analyse elektrischer Netzwerke werden erarbeitet (Zweigstrom-Methode, Knotenpotentialmethode, Maschenstrommethode, Äquivalenzschaltungen: Serien-Parallel-Transformation, Stern-Dreiecksumwandlung, Thévenin- und Norton-Äquivalenz).

Die Beschreibung stationärer harmonischer Vorgänge wird über reelle Größen eingeführt und durch die Verwendung komplexer Zahlen und die Begriffe „Impedanz“ und „komplexen Leistung“ formalisiert.

Die Zeigerdarstellung wird als eine grafische Lösungsmethode vorgestellt.

Die Methode der Netzwerkanalyse wird abschließend auch auf magnetische Kreise für die Analyse von Transformatoren und thermische Kreise erweitert.