Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. WiSe 2024/25
  2. Hilfe
  3. Sitemap
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]

Strukturbaum
Die Veranstaltung wurde 3 mal im Vorlesungsverzeichnis WiSe 2024/25 gefunden:
  • Funktionen:
Experimental-Elektrotechnik    Sprache: Deutsch    Keine Belegung möglich
(Keine Nummer) Vorlesung/Übung     WiSe 2024/25     3 SWS     jedes 2. Semester     ECTS-Punkte: 4     https://moodle.uni-due.de/course/view.php?id=17573
   Lehreinheit: Elektrotechnik und Informationstechnik    
 
      EIT BA, Elektrotechnik und Informationstechnik (Bachelor-Studiengang)   ( 1. Semester )
  Bachelor of Science Elektrotechnik und Informationstechnik, Abschluss 83, Bachelor of Science Elektrotechnik und Informationstechnik (83588)   ( 1. Semester ) - Kategorie : PV    
   Zugeordnete Lehrpersonen:   Schmechel verantwort ,   Wiss. Mitarb. begleitend
 
 
 
   Termin: Freitag   08:00  -  10:30    wöch.       Raum :   MD 162   MD  
 
 
   Bemerkung:

Der Kurs „Experimental-Elektrotechnik“ vermittelt anhand von Demonstrationsexperiementen eine Einführung in die Grundlagen der Elektrotechnik. Dabei steht die experimentelle Erfahrung vor der theoretischen Beschreibung.

Inhaltlich werden folgende Themen behandelt:

  1. Elektrostatik: Ladungstrennung, Kraftwirkung auf Ladungen, Elektrisches Feld, Definition der elektrischen Spannung, Entladungsvorgänge und Momentanleistung.

  2. Stationärer Stromkreis: Definition der elektrischen Stromstärke, Ohmsches Gesetz, Kirchhoffscher Maschensatz und Knotensatz und deren Konsequenz für Reihen- und Parallelschaltung, Potentiometerschaltung.

  3. Reale Spannungsquellen: Strom-Spannungscharakteristik realer Quellen (Batterien, Akkumulatoren, Transformatoren) und deren Beschreibung durch lineare Ersatzquellen, Innenwiderstand, Kurzschlussstrom und offene Klemmspannung, Reihen und Parallelschaltung realer Quellen, Verlustleistung in realen Quellen, Leistungsanpassung, hochohmige vs. niederohmige elektrische Leistungsübertragung. Kondensator: Definition des Begriffs „Kapazität“, Zusammenhang mit der Geometrie, funktionale Strom-Spannungsabhängigkeit an einem Kondensator und deren Konsequenz für das Wechselstromverhalten sowie das zeitliche Auf- und Entladeverhalten

  4. Magnetismus infolge von Stromfluss, Kraftwirkung auf stromdurchflossene Leiter, Lorenzkraft, Ferromagnetismus, Maxwellsche Kraft (Reluktanzkraft), Gleichstrommotor (mit Permanentmagnet und als Reihen-bzw. Hauptschlussmotor).

  5. Induktionsgesetz: Induktionsspannung als Funktion des magnetischen Flusses, Induktionsspannung als Ring- (bzw. Umlauf-)spannung (elektrodenlose Ringentladung, Induktionsofen), die Lenz´sche Regel, Wirbelstrombremse.

  6. Anwendungen des Induktionsgesetztes: fremd- und selbsterregte Generatoren, das dynamoelektrische Prinzip, Transformatoren und deren Bedeutung bei der Energieübertragung und zur Potentialtrennung, Definition der Größe „(Selbst-)Induktivität“ und des Bauelements „Spule“, Strom-Spannungszusammenhang an einer Spule und deren Bedeutung für das Wechselstromverhalten sowie bei Ein- und Ausschaltvorgängen.

  7. Elektrische Schwingungen und Wellen: Elektrischer Schwingkreis, Ausbreitung elektrischer Schwingungen auf Leitern (Lecherleitung), Ausbreitung elektromagnetischer Wellen im Freiraum, Eigenschaften elektromagnetischer Wellen, Nachweis der elektromagnetischen Strahlung von Smartphones (WLAN; Bluetooth, LTE)

  8. Intrinsische Halbleiter: Qualitative Einführung des Bändermodells und experimentelle Bestätigung durch Temperaturabhängigkeit des elektrischen Widerstands, Nachweis der Fundamentalabsorption sowie der Infrarottransparenz üblicher Halbleiter, Nachweis des inneren photoelektrischen Effekts (Fotoleitung) sowie (Elektro-)Lumineszenz sowie die Korrelation all dieser Phänomene miteinander, Feldeffekt sowie dessen Nutzung in Feldeffekttransistoren.

  9. Extrinsische Halbleiter: Idee der Substitutionsdotierung und Nachweis der Wirkung auf die elektrische Leitfähigkeit, Thermospannung und Erklärung des Begriffs „Loch“. Der pn-Übergang und dessen nichtlineare Strom-Spannungscharakteristik. Nachweis der Built-in-Spannung durch den photovoltaischen Effekt, Anwendung des pn-Übergangs als Gleichrichter in Einweg- und Brückengleichrichtern sowie Spannungsvervielfacher-schaltungen.

  10. Rückkopplung ideal verstärkender Elemente mit idealer Begrenzung: Gegenkopplung und deren Nutzung in Regelkreisen (Bsp. Konstant-spannungsquelle). Mitkopplung und deren Bedeutung für bistabile, astabile und monostabile Kippschaltungen, sowie Komparatoren und Schmitt-Trigger.