Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. SoSe 2025
  2. Hilfe
  3. Sitemap
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]

Strukturbaum
Die Veranstaltung wurde 1 mal im Vorlesungsverzeichnis SoSe 2025 gefunden:
  • Funktionen:
Modul 7: Sustainable Futures with AI    Sprache: Englisch    Keine Belegung möglich
(Keine Nummer) Vorlesung     SoSe 2025     jedes Semester     ECTS-Punkte: 6     https://sust.ris.uni-due.de/
   Fakultät: Informatik    
   Teilnehmer/-in  erwartet : 40 
 
   Zielgruppe/Studiengang   Master of Science Sustainable Innopreneurship, Abschluss 87, Master of Science Sustainable Innopreneurship (87SIN)   ( 2. Semester )
   Zugeordnete Lehrperson:   Rothe
 
 
 
   Termin: Freitag   10:00  -  14:00    wöch.
Beginn : 11.04.2025    Ende : 18.07.2025
  
  R09 R04 H02
 
 
 
   Kommentar:

Artificial Intelligence (AI) is widely considered a generative technology that has the potential to have great impact on our society, economy, and ecology. Whether these impacts will be for worse or for better is up for discussion and depends on the actions of individuals, companies, and authorities worldwide towards the 18 UN Sustainable Development Goals.

Throughout the lecture series, students get familiar with concepts and theories that describe and explain AI companies, and learn about the design of Machine Learning-based applications. Do we need AI – or does AI solve our problems? What problems can machine learning effectively solve? What is the current impact of AI technologies on economy, society and ecology? How can we apply AI to a new domain or problem? What role do humans play in designing AI applications?

Building on fundamentals of information systems strategy and enterprise modelling, students reflect the impact of strategy and organizing in AI companies towards their ability to produce sustainable futures. We particularly investigate the generative capacity of data, tools, and (machine learning) models to produce such futures. Among others, we will cover the impact of biases in data and algorithms, explainability of AI applications, as well as accuracy, sovereignty, (inverse) scalability and framing of ML models. Throughout the entire module, we critically reflect impacts of managerial and algorithmic decision-making on sustainability, this includes impacts, for instance, on aspects of health and well-being (SDG 3), gender equality (SDG 5), or climate action (SDG 13).

 

More Information can be found on the chairs Website: https://sust.ris.uni-due.de/