Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Masterseminar Analytische Theorie der abelschen Varietäten - Einzelansicht

  • Funktionen:
Grunddaten
Veranstaltungsart Seminar Langtext Masterseminar Analytische Theorie der abelschen Varietäten
Veranstaltungsnummer Kurztext MAV
Semester WiSe 2017/18 SWS 2
Erwartete Teilnehmer/-innen 10 Max. Teilnehmer/-innen 12
Credits Belegung Keine Belegpflicht
Zeitfenster
Hyperlink http://www.esaga.uni-due.de/marc.levine/Courses/2017/SemAG/
Sprache Englisch
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Status Bemerkung fällt aus am Max. Teilnehmer/-innen E-Learning
Einzeltermine ausblenden
iCalendar Export für Outlook
Fr. 14:00 bis 16:00 wöch. Weststadtcarree - WSC-S-U-3.01       Präsenzveranstaltung
Einzeltermine:
  • 13.10.2017
  • 20.10.2017
  • 27.10.2017
  • 03.11.2017
  • 10.11.2017
  • 17.11.2017
  • 24.11.2017
  • 01.12.2017
  • 08.12.2017
  • 15.12.2017
  • 22.12.2017
  • 12.01.2018
  • 19.01.2018
  • 26.01.2018
  • 02.02.2018
Gruppe [unbenannt]:
 
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Levine, Marc, Professor, Dr. rer. nat.
Zuordnung zu Einrichtungen
Mathematik
Inhalt
Kommentar

Seminar Overview

 

This is a seminar on abelian varieties over the complex numbers, looked at from the point of view of complex analysis. An abelian variety is perhaps the simplest compact complex manifold, being simply of the form Cn/Λ, where Λ=Z2n is a lattice in Cn, a so-called complex torus. The case of dimension 1 is the well-known example of elliptic curves. In general, the interplay of the complex function theory on complex torii with the abstract condition that the torus is algebraic gets translated into a fascinating mixture of linear algebra and arithmetic that makes abelian varieties a fertile testing ground and collection of examples for many important phenomena in algebraic geometry, including the study of line bundles, the Hodge theory on the singular cohomology, questions of embeddings into projective spaces, groups of automorphisms, and numerous other areas of study. Thus, through the study of abelian varieties, many of the fundamental properties of algebraic varieties are illustrated in a concrete and down to earth manner.

 

The prerequisites for this seminar are: theory of complex functions of 1-variable (Funktiontheorie), Analysis I, II, Linear Algebra I, II, Algebra I. In addition, basic knowledge of differential forms and integration of differential forms will be needed. Some knowledge of complex functions of several variables, singular cohomology and the de Rham theorem will be helpful, but not required. Algebraic geometry will not be required.

 

The program will follow closely the book

 

Analytic theory of abelian varieties, H.P.F. Swinnerton-Dyer,

 

with some additional material taken from chapter 1 of

 

Abelian varieties, D. Mumford,

 

and some applications taken from

 

Curves and their Jacobians, D. Mumford,

 

if time permits, We will discuss the program of lectures (by the participants) in the first meeting, on Friday, 13.10.2017. The lectures will be given by the seminar participants, in English or German as desired, following a prepared program.


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2017/18 , Aktuelles Semester: SoSe 2024