Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Ausgewählte Kapitel der elementaren Zahlentheorie - Einzelansicht

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung Langtext
Veranstaltungsnummer Kurztext
Semester SoSe 2018 SWS
Erwartete Teilnehmer/-innen 75 Max. Teilnehmer/-innen
Credits Belegung Keine Belegpflicht
Zeitfenster
Hyperlink https://moodle.uni-due.de/course/view.php?id=12750
Sprache Deutsch
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Status Bemerkung fällt aus am Max. Teilnehmer/-innen E-Learning
Einzeltermine anzeigen
iCalendar Export für Outlook
Di. 08:00 bis 10:00 wöch. Weststadtcarree - WSC-N-U-3.04       Präsenzveranstaltung
Gruppe [unbenannt]:
 
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Heinloth, Franziska , Dr.
Zielgruppen/Studiengänge
Zielgruppe/Studiengang Semester Pflichtkennzeichen
LA Ba HRGe, Bachelor-Studiengang mit Lehramtsoption Haupt-, Real-, Gesamtschule 4 - WP
LA Ma HRGe, Master-Studiengang mit Lehramtsoption Haupt-, Real-, Gesamtschule - WP
LHRGe, Lehramt an Grund-, Haupt-, Real- u. Gesamtschule, Sp Haupt-, Real-, Gesamtsch. 4 - WP
LGr, Lehramt an Grund-, Haupt-, Real- u. Gesamtschulen (entspr. JG-Stufen), Sp Grundschule - WP
LA Ma G, Master-Studiengang mit Lehramtsoption Grundschule - WP
Zuordnung zu Einrichtungen
Mathematik
Inhalt
Kommentar

Zunächst werden wir die aus der Arithmetik bekannten Restklassenringe der ganzen Zahlen genauer betrachten und eine wichtige Anwendung aus der Kryptographie kennenlernen. Dann werden wir einfache Gleichungen (wie zum Beispiel a2+ b2= c2) mit geometrischen und arithmetischen Methoden auf ganzzahlige Lösungen untersuchen.  

Als nächstes werden wir die komplexen Zahlen und die geometrische Bedeutung ihrer Rechenoperationen untersuchen und dies auf Konstruktionen mit Zirkel und Lineal anwenden.

Zuletzt werden wir Kettenbrüche benutzen, um gute Näherungsbrüche (mit kleinen Nennern und Zählern) für Zahlen wie beispielsweise π zu finden.

  • Restklassenringe ganzer Zahlen, chinesischer Restsatz, Euler und kleiner Fermat
  • RSA-Verfahren
  • Rationale Punkte auf ebenen Quadriken
  • Pythagoräische Tripel
  • Komplexe Zahlen, Geometrie der Addition und Multiplikation
  • Potenzen und Wurzeln komplexer Zahlen
  • Konstruktionen mit Zirkel und Lineal
  • Quadratische Ergänzung und die Methode von Cardano für Gleichungen dritten Grades
  • Fundamentalsatz der Algebra und Konsequenzen für reelle Polynome
  • Kettenbruchentwicklung rationaler und irrationaler Zahlen, Näherungsbrüche

Für einen ersten Eindruck siehe zum Beispiel

K. Reiss, G. Schmieder: Basiswissen Zahlentheorie.

Bemerkung

Die Übungen beginnen in der ersten Vorlesungswoche.

Voraussetzungen

Studierende im Master HRSGe beachten bitte Folgendes: Diese Veranstaltung können Sie nur dann belegen, wenn Sie sie nicht bereits innerhalb des Bachelorstudiums belegt und abgeschlossen haben.

Die Teilnahme an der Veranstaltung setzt für Bachelorstudierende den erfolgreichen Abschluss des Moduls "Arithmetik und Elementargeometrie" voraus.

Gute Kenntnisse aus der Arithmetik sind unbedingt erforderlich. Grundkenntnisse über Folgen sind hilfreich.

Leistungsnachweis

Klausur; Voraussetzung für die Klausurzulassung ist die erfolgreiche und aktive Teilnahme an den Übungen. Melden Sie sich hierfür im LSF zu einer der Gruppen an. Tragen Sie sich auch in den Moodle2-Kursraum ein - der Zugangsschlüssel wird in der ersten Vorlesung bekanntgegeben.


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester SoSe 2018 , Aktuelles Semester: WiSe 2024/25