Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Startseite    Anmelden     
Logout in [min] [minutetext]

Computational Biophysics - Einzelansicht

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung/Übung Langtext
Veranstaltungsnummer 091102861 Kurztext
Semester WiSe 2023/24 SWS 2
Erwartete Teilnehmer/-innen Max. Teilnehmer/-innen
Credits Belegung Keine Belegpflicht
Zeitfenster
Hyperlink
Sprache Englisch
Termine Gruppe: [unbenannt] iCalendar Export für Outlook
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Status Bemerkung fällt aus am Max. Teilnehmer/-innen E-Learning
Einzeltermine anzeigen
iCalendar Export für Outlook
Do. 16:15 bis 17:45 wöch.     online at https://bbb.uni-due.de/b/dan-aze-a5a   E-Learning
Gruppe [unbenannt]:
 
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Hoffmann, Daniel, Professor, Dr.
Zielgruppen/Studiengänge
Zielgruppe/Studiengang Semester Pflichtkennzeichen
Master of Science Physik, Master of Science Physik - WP
Ph M.Sc., Physik (Master of Science) - WP
Zuordnung zu Einrichtungen
Bioinformatik and Computational Biophysics
Inhalt
Kommentar

ONLINE COURSE (BBB) Biomolecules, cells, organisms, or societies are very complex and noisy physical systems. They are thus characterized by a high degree of uncertainty. A natural approach to deal with uncertainty is probabilistic modeling. In this lecture series we will therefore learn about theoretical concepts and computational tools for probabilistic modeling with a focus on Bayesian modeling. The lecture is accompanied by exercises in which you can try out such methods. The "exam" is a project in which you apply the concepts and tools to the modeling and analysis of complex systems of your choice.

Bemerkung

ONLINE COURSE (BBB) Biomolecules, cells, organisms, or societies are very complex and noisy physical systems. They are thus characterized by a high degree of uncertainty. A natural approach to deal with uncertainty is probabilistic modeling. In this lecture series we will therefore learn about theoretical concepts and computational tools for probabilistic modeling with a focus on Bayesian modeling. The lecture is accompanied by exercises in which you can try out such methods. The "exam" is a project in which you apply the concepts and tools to the modeling and analysis of complex systems of your choice.


Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2023/24 , Aktuelles Semester: SoSe 2024