Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
  1. WiSe 2023/24
  2. Hilfe
  3. Sitemap
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]

Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden. Veranstaltung ist aus dem Semester WiSe 2015/16 , Aktuelles Semester: WiSe 2023/24
  • Funktionen:
Fahrzeugdynamik    Sprache: Deutsch    Keine Belegung möglich
(Keine Nummer) Vorlesung     WiSe 2015/16     2 SWS     jedes 2. Semester    
   Lehreinheit: Maschinenbau    
 
      M-AEM(MB), Master Automotive Engineering u. Management (Vertiefungsrichtung Maschinenbau)   ( 1. - 3. Semester )
  M-AEM (ET), Master Automotive Engineering u. Management (Vertiefungsrichtung Elektrotechnik)   ( 1. - 3. Semester )
  WIng M.Sc. MB/M, Wirtschaftsingenieur Richtung Maschinenbau (Master, Mechatronik)   ( 2. Semester )
  Maschbau MA/M, Maschinenbau (Master, Mechatronik)   ( 2. Semester )
  15 M.Sc.ISE, Mechanical Engineering (Master of Science, GME)   ( 1. Semester )
  15 M.Sc.ISE, Mechanical Engineering (Master of Science, M)   ( 1. Semester )
  ISE/ME M.Sc. 1, ISE/Mechanical Engineering (Master of Science, GME)   ( 1. Semester )
   Zugeordnete Lehrpersonen:   Bruckmann ,   Kracht
 
 
 
   Termin: Montag   11:00  -  14:00    wöch.
Beginn : 19.10.2015    Ende : 08.02.2016
      Raum :   MB 143   MB  
 
 
   Kommentar:

Beschreibung:
1. Einleitung
2. Grundlagen und Modellierungsmethoden

2.1 Definitionen und Kenngrößen
2.2 Modellierungsmethoden
2.3 Simulationsumgebung
2.4 Beispiel: Einspurmodell

3. Kinematik und Dynamik von Mehrkörpersystemen

3.1 Grundlegende Verfahren der Kinematik
3.2 Aufstellen der Bewegungsgleichungen von Mehrkörpersystemen

3.2.1 Fundamentalgleichung der Dynamik für Punktmassen
3.2.2 LAGRANGEsche Gleichungen erster Art für Punktmassen
3.2.3 LAGRANGEsche Gleichungen zweiter Art für starre Körper
3.2.4 Das d‘ALEMBERTsche Prinzip für starre Körper
3.2.5 Computergestütztes Aufstellen der Bewegungsgleichungen für Mehrkörpersysteme und Mechanismen
3.2.6 Kinematische Differentiale
3.2.7 Bewegungsgleichungen

4. Modellierung von Fahrzeugkomponenten

4.1 Fahrgestell
4.2 Radaufhängungs-Kinematik

4.2.1 Einbindung der Radaufhängungs-Kinematik
4.2.1 Beispiel: McPherson-Radaufhängung
4.2.1 Zusammenstellung gebräuchlicher Radaufhängungen

4.3 Rad-Straße-Kontakt

4.3.1 Physikalische Beschreibung des Rad-Straße-Kontakts
4.3.2 Die Kontaktpunkt-Geometrie
4.3.3 Die Kontakt-Geschwindigkeiten
4.3.4 Reifenmodelle

4.4 Modellierung des Antriebstranges

4.4.1 Modellbildung
4.4.2 Modell des Motors
4.4.3 Relativkinematik des Antriebstranges
4.4.4 Absolutkinematik des Antriebstranges
4.4.5 Aufstellen der Bewegungsgleichungen
4.4.6 Diskussion von Simulationsergebnissen

5. Modellbildung und Simulation von Kraftfahrzeugen

5.1 Modellierung eines Kraftfahrzeuges

5.1.1 Kinematik des Gesamtmodells
5.1.2 Dynamik des Gesamtmodells
5.1.3 Beispiel: Zweispurmodell

5.2 Simulation von Kraftfahrzeugen

5.2.1 Aufbau und Konzept von FASIM_C++ und IPG
5.2.2 Struktur eines Fahrzeugmodells
5.2.3 Aufstellen der Bewegungsgleichungen
5.2.4 Numerische Integration
5.2.5 Behandlung von Ereignissen
5.2.6 Beschreibung der Module
5.2.7 Oberfläche
5.2.8 Animation

6. Anwendungen der Fahrzeugsimulation

6.1 Regelung der Fahrzeugdynamik

6.1.1 Das Anti-Blockier-System ABS
6.1.2 Die Antriebs-Schlupf-Regelung ASR
6.1.3 Fahrdynamikregelung (FDR, ESP, DSC)

6.2 Echtzeitsimulation

6.2.1 Grundlegende Aspekte der Echtzeitsimulation mit Hardware-in-the-Loop
6.2.2 Echtzeitbedingungen
6.2.3 Echtzeitsimulation mit HIL bei der Entwicklung von Fahrdynamiksystemen
6.2.4 Echtzeitsimulation zum Test der Sicherheitssoftware
6.2.5 Fehlersimulation

6.3 Fahrkomfort

6.3.1 Abbildung des Fahrkomforts
6.3.2 Abbildung des Komfortempfindens
6.3.3 Simulationsergebnisse

6.4 Fahrzeugsicherheit

6.4.1 Gebiete der Fahrzeugsicherheit
6.4.2 Insassensimulation
6.4.3 Zukünftige Rückhaltesysteme

 

Lernziele:
Der Studierende soll in die Lage versetzt werden
- grundlegende Begriffe der Fahrzeugdynamik zu kennen und erklären zu können
- die dynamischen Kenngrößen von Fahrzeugen zu bestimmen
- selbst Simulationsmodelle für Fahrzeuge zu erstellen - vorhandene Software zur Fahrzeugsimulation anzuwenden und die Ergebnisse zu bewerten