Strukturbaum
Keine Einordnung ins Vorlesungsverzeichnis vorhanden.
Veranstaltung ist aus dem Semester
WiSe 2023/24
, Aktuelles Semester: WiSe 2024/25
|
|
Computational Micromechanics
Sprache: Englisch
Keine Belegung möglich
|
(Keine Nummer)
Vorlesung/Übung
WiSe 2023/24
4 SWS
keine Übernahme
ECTS-Punkte: 6
https://moodle.uni-due.de/course/view.php?id=42985
|
Abteilungen:
|
Bauwissenschaften
|
|
|
|
M-CM-19, Computational Mechanics
(
1.
-
4.
Semester )
|
|
B5, Bauingenieurwesen (M.Sc.)
(
1.
-
4.
Semester )
|
|
Master of Science Computational Mechanics, ISE, Abschluss 87, Master of Science Computational Mechanics, ISE (87E96)
(
1.
-
4.
Semester )
- Kategorie : WA
|
|
Master of Science Bauingenieurwesen, Abschluss 87, Master of Science Bauingenieurwesen (87257)
(
1.
-
4.
Semester )
- Kategorie : WA
|
Zugeordnete Lehrpersonen:
|
Schneider
verantwort
,
Mehta
begleitend
|
|
|
|
Termin:
|
findet statt
Donnerstag
09:00
-
10:30
wöch.
Beginn : 19.10.2023
Ende : 01.02.2024
|
|
Raum :
SE 008
S - E
|
|
Lecture
|
|
|
findet statt
Donnerstag
10:30
-
12:00
wöch.
Beginn : 19.10.2023
Ende : 01.02.2024
|
|
Raum :
SE 008
S - E
|
|
Exercises
|
|
|
|
Kommentar: |
Course Contents
For computing effective properties of heterogeneous materials with complex mi- crostructures, modern computational techniques are imperative. The course provides an introduction to modern numerical discretization and solution methods which are based on the fast Fourier transform (FFT) and enable treating industrial-scale microstructures and nonlinear mechanical material behavior in an efficient manner. The course acquaints its participants to topics of current research, and is offered exclusively in Essen at master’s level. The goal of the accompanying exercise sessions is implementing a prototypical FFT-based micromechanics solver.
Syllabus
• Basic equations for computing effective elastic material properties Asymptotic homogenization of linear elasticity for periodic microstructures; the elastic cell problem to determine the effective stiffness tensor; properties of the effective stiffness tensor; Lippmann-Schwinger formulation of the cell problem of elasticity • The FFT-based computational homogenization method of Moulinec-Suquet The Lippmann-Schwinger equation as numerical solution method (basic scheme); optimal choice of the reference material; voxel structure of micro- computed tomography images and challenges for classical finite element solvers; Fourier series representation of solution fields and the fast Fourier transform; discretization of the Lippmann-Schwinger equation by trigonometric collocation; mixed strain-stress boundary conditions for direct comparison with experiments; problems and limits of the Moulinec-Suquet method • Procedure for the treatment of materials with high contrast, pores or imperfections Eyre-Milton formulation of the cell problem of elasticity; associated solution method; optimal choice of the reference material; the conjugate gradient method for the Lippmann-Schwinger equation; finite differences and finite element discretizations; optimal choice of discretization scheme and solution method for selected examples • Nonlinear and time-dependent mechanical problems Formulation of time-dependent mechanical homogenization problems; time discretization; the basic scheme in the nonlinear case - interpretation as gradient descent method; the Newton-Raphson method for the Lippmann-Schwinger equation
see also https://www.uni-due.de/ingmath/courses.php |
|
Literatur: |
[1] Milton, G. W.: The Theory of Composites. Springer, New York, 2002. |
|